Matrices
Input-Output Analysis

Consider the Three-Sector Economy: In an economic system, each of three industries wood, steel and coal depends on the others for raw materials.

Matrices

Consider the Three-Sector Economy: In an economic system, each of three industries wood, steel and coal depends on the others for raw materials.
Let:
$\mathrm{x}_{\mathrm{w}}=$ amount of wood produced (in units of dollars)
$\mathbf{x}_{\mathbf{s}}=$ amount of steel produced (in units of dollars)
$\mathbf{x}_{\mathrm{c}}=$ amount of coal produced (in units of dollars)

Matrices

Consider the Three-Sector Economy: In an economic system, each of three industries wood, steel and coal depends on the others for raw materials.
Let:
$\mathrm{x}_{\mathrm{w}}=$ amount of wood produced (in units of dollars)
$\mathbf{x}_{\mathrm{s}}=$ amount of steel produced (in units of dollars)
$\mathbf{x}_{\mathrm{c}}=$ amount of coal produced (in units of dollars)
$\mathrm{x}_{\mathrm{w}}=$ wood needed by wood, steel and coal + outside demand for wood $\mathbf{x}_{\mathrm{s}}=$ steel needed by wood, steel and coal + outside demand for steel
$\mathbf{x}_{\mathrm{c}}=$ coal needed by wood, steel and coal + outside demand for coal

Matrices

Consider the Three-Sector Economy: In an economic system, each of three industries wood, steel and coal depends on the others for raw materials.
Let:
$\mathbf{x}_{\mathrm{w}}=$ amount of wood produced (in units of dollars)
$\mathbf{x}_{\mathrm{s}}=$ amount of steel produced (in units of dollars)
$\mathbf{x}_{\mathrm{c}}=$ amount of coal produced (in units of dollars)
$x_{w}=$ wood needed by wood, steel and coal + outside demand for wood $\mathrm{x}_{\mathrm{s}}=$ steel needed by wood, steel and coal + outside demand for steel $\mathbf{x}_{\mathrm{c}}=$ coal needed by wood, steel and coal + outside demand for coal

Notation: let $\mathbf{A}_{\mathbf{w s}}=$ amount of wood needed for steel, and $\mathbf{d}_{\mathbf{w}}=$ outside demand for wood, \cdots.

Matrices

$$
\begin{align*}
x_{w} & =\left(A_{w w}+A_{w s}+A_{w c}\right)+d_{w} \tag{1}\\
x_{s} & =\left(A_{s w}+A_{s s}+A_{s c}\right)+d_{s} \tag{2}\\
x_{c} & =\left(A_{c w}+A_{c s}+A_{c c}\right)+d_{c} \tag{3}
\end{align*}
$$

Matrices

$$
\begin{align*}
\mathbf{x}_{\mathrm{w}} & =\left(\mathbf{A}_{\mathrm{ww}}+\mathbf{A}_{\mathrm{ws}}+\mathbf{A}_{\mathrm{wc}}\right)+\mathbf{d}_{\mathrm{w}} \tag{1}\\
\mathbf{x}_{\mathrm{s}} & =\left(\mathbf{A}_{\mathrm{sw}}+\mathbf{A}_{\mathrm{ss}}+\mathbf{A}_{\mathrm{sc}}\right)+\mathbf{d}_{\mathrm{s}} \tag{2}\\
\mathbf{x}_{\mathrm{c}} & =\left(\mathbf{A}_{\mathrm{cw}}+\mathbf{A}_{\mathrm{cs}}+\mathbf{A}_{\mathrm{cc}}\right)+\mathbf{d}_{\mathrm{c}} \tag{3}
\end{align*}
$$

Useful trick (\Rightarrow Get Noble Prize!) Multiply each $\mathbf{A}_{\mathbf{i j}}$ by $\mathbf{1}$

Matrices

$$
\begin{align*}
\mathbf{x}_{\mathrm{w}} & =\left(\mathbf{A}_{\mathrm{ww}}+\mathbf{A}_{\mathrm{ws}}+\mathbf{A}_{\mathrm{wc}}\right)+\mathbf{d}_{\mathrm{w}} \tag{1}\\
\mathbf{x}_{\mathrm{s}} & =\left(\mathbf{A}_{\mathrm{sw}}+\mathbf{A}_{\mathrm{ss}}+\mathbf{A}_{\mathrm{sc}}\right)+\mathbf{d}_{\mathrm{s}} \tag{2}\\
\mathbf{x}_{\mathrm{c}} & =\left(\mathbf{A}_{\mathrm{cw}}+\mathbf{A}_{\mathrm{cs}}+\mathbf{A}_{\mathrm{cc}}\right)+\mathbf{d}_{\mathrm{c}} \tag{3}
\end{align*}
$$

Useful trick (\Rightarrow Get Noble Prize!) Multiply each \mathbf{A}_{ij} by $\mathbf{1}$

$$
\begin{align*}
& x_{w}=\left(\frac{A_{w w}}{x_{w}} \cdot x_{w}+\frac{A_{w s}}{x_{s}} \cdot x_{s}+\frac{A_{w c}}{x_{c}} \cdot x_{c}\right)+d_{w} \tag{4}\\
& x_{s}=\left(\frac{A_{s w}}{x_{w}} \cdot x_{w}+\frac{A_{s s}}{x_{s}} \cdot x_{s}+\frac{A_{s c}}{x_{c}} \cdot x_{c}\right)+d_{s} \tag{5}\\
& x_{c}=\left(\frac{A_{c w}}{x_{w}} \cdot x_{w}+\frac{A_{c s}}{x_{s}} \cdot x_{s}+\frac{A_{c c}}{x_{c}} \cdot x_{c}\right)+d_{c} \tag{6}
\end{align*}
$$

Matrices

$$
\begin{align*}
\mathbf{x}_{\mathrm{w}} & =\left(\mathbf{A}_{\mathrm{ww}}+\mathbf{A}_{\mathrm{ws}}+\mathbf{A}_{\mathrm{wc}}\right)+\mathbf{d}_{\mathrm{w}} \tag{1}\\
\mathbf{x}_{\mathrm{s}} & =\left(\mathbf{A}_{\mathrm{sw}}+\mathbf{A}_{\mathrm{ss}}+\mathbf{A}_{\mathrm{sc}}\right)+\mathbf{d}_{\mathrm{s}} \tag{2}\\
\mathbf{x}_{\mathrm{c}} & =\left(\mathbf{A}_{\mathrm{cw}}+\mathbf{A}_{\mathrm{cs}}+\mathbf{A}_{\mathrm{cc}}\right)+\mathbf{d}_{\mathrm{c}} \tag{3}
\end{align*}
$$

Useful trick (\Rightarrow Get Noble Prize!) Multiply each $\mathbf{A}_{\mathbf{i j}}$ by $\mathbf{1}$

$$
\begin{align*}
& x_{w}=\left(\frac{A_{w w}}{x_{w}} \cdot x_{w}+\frac{A_{w s}}{x_{s}} \cdot x_{s}+\frac{A_{w c}}{x_{c}} \cdot x_{c}\right)+d_{w} \tag{4}\\
& x_{s}=\left(\frac{A_{s w}}{x_{w}} \cdot x_{w}+\frac{A_{s s}}{x_{s}} \cdot x_{s}+\frac{A_{s c}}{x_{c}} \cdot x_{c}\right)+d_{s} \tag{5}\\
& x_{c}=\left(\frac{A_{c w}}{x_{w}} \cdot x_{w}+\frac{A_{c s}}{x_{s}} \cdot x_{s}+\frac{A_{c c}}{x_{c}} \cdot x_{c}\right)+d_{c} \tag{6}
\end{align*}
$$

Let $\frac{A_{w s}}{x_{s}}=a_{w s}$ i.e. let $\frac{A_{i j}}{x_{j}}=a_{i j}$

Matrices

Input-Output Analysis
Let $\frac{A_{w s}}{x_{s}}=a_{w s}$ i.e. let $\frac{A_{i j}}{x_{j}}=a_{i j}$

$$
\begin{align*}
x_{w} & =\left(a_{w w} \cdot x_{w}+a_{w s} \cdot x_{s}+a_{w c} \cdot x_{c}\right)+d_{w} \tag{7}\\
x_{s} & =\left(a_{s w} \cdot x_{w}+a_{s s} \cdot x_{s}+a_{s c} \cdot x_{c}\right)+d_{s} \tag{8}\\
x_{c} & =\left(a_{c w} \cdot x_{w}+a_{c s} \cdot x_{s}+a_{c c} \cdot x_{c}\right)+d_{c} \tag{9}
\end{align*}
$$

Matrices

Let $\frac{A_{w s}}{x_{s}}=a_{w s}$ i.e. let $\frac{A_{i j}}{x_{j}}=a_{i j}$

$$
\begin{align*}
x_{w} & =\left(a_{w w} \cdot x_{w}+a_{w s} \cdot x_{s}+a_{w c} \cdot x_{c}\right)+d_{w} \tag{7}\\
x_{s} & =\left(a_{s w} \cdot x_{w}+a_{s s} \cdot x_{s}+a_{s c} \cdot x_{c}\right)+d_{s} \tag{8}\\
x_{c} & =\left(a_{c w} \cdot x_{w}+a_{c s} \cdot x_{s}+a_{c c} \cdot x_{c}\right)+d_{c} \tag{9}
\end{align*}
$$

In matrix form:

$$
\left[\begin{array}{c}
\mathbf{x}_{\mathrm{w}} \\
\mathbf{x}_{\mathrm{s}} \\
\mathbf{x}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{ccc}
\mathbf{a}_{\mathrm{ww}} & \mathbf{a}_{\mathrm{ws}} & \mathbf{a}_{\mathrm{wc}} \\
\mathbf{a}_{\mathrm{sw}} & \mathbf{a}_{\mathrm{ss}} & \mathbf{a}_{\mathrm{sc}} \\
\mathbf{a}_{\mathrm{cw}} & \mathbf{a}_{\mathrm{cs}} & \mathbf{a}_{\mathrm{cc}}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{x}_{\mathrm{w}} \\
\mathbf{x}_{\mathrm{s}} \\
\mathbf{x}_{\mathrm{c}}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{d}_{\mathrm{w}} \\
\mathbf{d}_{\mathrm{s}} \\
\mathbf{d}_{\mathrm{c}}
\end{array}\right]
$$

Matrices

Input-Output Analysis
Let $\frac{A_{w s}}{x_{s}}=a_{w s}$ i.e. let $\frac{A_{i j}}{x_{j}}=a_{i j}$

$$
\begin{align*}
x_{w} & =\left(a_{w w} \cdot x_{w}+a_{w s} \cdot x_{s}+a_{w c} \cdot x_{c}\right)+d_{w} \tag{7}\\
x_{s} & =\left(a_{s w} \cdot x_{w}+a_{s s} \cdot x_{s}+a_{s c} \cdot x_{c}\right)+d_{s} \tag{8}\\
x_{c} & =\left(a_{c w} \cdot x_{w}+a_{c s} \cdot x_{s}+a_{c c} \cdot x_{c}\right)+d_{c} \tag{9}
\end{align*}
$$

In matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{w} \\
x_{s} \\
x_{c}
\end{array}\right]=\left[\begin{array}{lll}
a_{w w} & a_{w s} & a_{w c} \\
a_{s w} & a_{s s} & a_{s c} \\
a_{\mathrm{cw}} & a_{\mathrm{cs}} & a_{\mathrm{cc}}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{w} \\
x_{s} \\
x_{c}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{d}_{w} \\
\mathbf{d}_{\mathrm{s}} \\
\mathbf{d}_{\mathrm{c}}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
\mathbf{d}_{1} \\
\mathbf{d}_{2} \\
\mathbf{d}_{3}
\end{array}\right]}
\end{aligned}
$$

Matrices

Input-Output Analysis
Let $\frac{A_{w s}}{x_{s}}=a_{w s}$ i.e. let $\frac{A_{i j}}{x_{j}}=a_{i j}$

$$
\begin{align*}
x_{w} & =\left(a_{w w} \cdot x_{w}+a_{w s} \cdot x_{s}+a_{w c} \cdot x_{c}\right)+d_{w} \tag{7}\\
x_{s} & =\left(a_{s w} \cdot x_{w}+a_{s s} \cdot x_{s}+a_{s c} \cdot x_{c}\right)+d_{s} \tag{8}\\
x_{c} & =\left(a_{c w} \cdot x_{w}+a_{c s} \cdot x_{s}+a_{c c} \cdot x_{c}\right)+d_{c} \tag{9}
\end{align*}
$$

In matrix form:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{x}_{w} \\
\mathbf{x}_{\mathrm{s}} \\
\mathbf{x}_{\mathrm{c}}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{a}_{\mathrm{ww}} & \mathbf{a}_{\mathrm{ws}} & \mathbf{a}_{\mathrm{wc}} \\
\mathbf{a}_{\mathrm{sw}} & \mathbf{a}_{\mathrm{ss}} & \mathbf{a}_{\mathrm{sc}} \\
\mathbf{a}_{\mathrm{cw}} & \mathbf{a}_{\mathrm{cs}} & \mathbf{a}_{\mathrm{cc}}
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{x}_{\mathrm{w}} \\
\mathbf{x}_{\mathrm{s}} \\
\mathbf{x}_{\mathrm{c}}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{d}_{\mathrm{w}} \\
\mathbf{d}_{\mathrm{s}} \\
\mathbf{d}_{\mathrm{c}}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]+\left[\begin{array}{l}
d_{1} \\
\mathbf{d}_{2} \\
d_{3}
\end{array}\right]} \\
& \mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}
\end{aligned}
$$

Matrices

Input-Output Analysis

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,

Matrices

Input-Output Analysis

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathrm{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$

Matrices

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{i j}}{x_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.

Matrices

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{i j}}{x_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.
- $a_{w s}$ is the amount of output from wood industry needed by the steel industry for each dollar of output produced by the steel industry.

Matrices

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{i j}}{x_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.
- $a_{w s}$ is the amount of output from wood industry needed by the steel industry for each dollar of output produced by the steel industry.
- $\mathbf{a}_{\mathbf{i j}}$ is the amount of output from industry \mathbf{i} needed by industry \mathbf{j} for each dollar of output produced by industry \mathbf{j}.

Matrices

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{\mathrm{ij}}}{\mathrm{x}_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.
- $a_{w s}$ is the amount of output from wood industry needed by the steel industry for each dollar of output produced by the steel industry.
- $\mathbf{a}_{\mathbf{i j}}$ is the amount of output from industry \mathbf{i} needed by industry \mathbf{j} for each dollar of output produced by industry \mathbf{j}.
- A is called the Input-Output matrix. This is usually known.

Matrices

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{i j}}{x_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.
- $a_{w s}$ is the amount of output from wood industry needed by the steel industry for each dollar of output produced by the steel industry.
- $\mathbf{a}_{\mathbf{i j}}$ is the amount of output from industry \mathbf{i} needed by industry \mathbf{j} for each dollar of output produced by industry \mathbf{j}.
- A is called the Input-Output matrix. This is usually known.
- D is called the demand matrix. This is usually known.

Matrices

- $X=A \cdot X+D$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{i j}}{x_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.
- $a_{w s}$ is the amount of output from wood industry needed by the steel industry for each dollar of output produced by the steel industry.
- $\mathbf{a}_{\mathbf{i j}}$ is the amount of output from industry \mathbf{i} needed by industry \mathbf{j} for each dollar of output produced by industry \mathbf{j}.
- A is called the Input-Output matrix. This is usually known.
- D is called the demand matrix. This is usually known.
- \mathbf{X} is the production matrix. It is the unknown that must be solved for. It gives the amount that each industry must produce to satisify all needs.

Matrices

- $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$,
- A has elements $\frac{A_{w s}}{x_{s}}=a_{w s}$ or $\frac{A_{i j}}{x_{j}}=a_{i j}$
- the ratio $\frac{A_{i j}}{x_{\mathrm{j}}}=\mathrm{a}_{\mathrm{ij}}$ typically does not change as the demand and production levels change. Once \mathbf{A} is known, it can be reused for different demand and production levels.
- $a_{w s}$ is the amount of output from wood industry needed by the steel industry for each dollar of output produced by the steel industry.
- $\mathbf{a}_{\mathbf{i j}}$ is the amount of output from industry \mathbf{i} needed by industry \mathbf{j} for each dollar of output produced by industry \mathbf{j}.
- A is called the Input-Output matrix. This is usually known.
- D is called the demand matrix. This is usually known.
- \mathbf{X} is the production matrix. It is the unknown that must be solved for. It gives the amount that each industry must produce to satisify all needs.
- must solve $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$ for the production level \mathbf{X}

Must solve $\mathbf{X}=\mathbf{A} \cdot \mathbf{X}+\mathbf{D}$ for the production level \mathbf{X}

$$
\begin{align*}
X & =A X+D \tag{10}\\
X-A X & =D \tag{11}\\
I \cdot X-A X & =D \tag{12}\\
(I-A) \cdot X & =D \tag{13}\\
(I-A)^{-1} \cdot(I-A) \cdot X & =(I-A)^{-1} \cdot D \tag{14}\\
I \cdot X & =(I-A)^{-1} \cdot D \tag{15}\\
X & =(I-A)^{-1} \cdot D \tag{16}
\end{align*}
$$

Matrices
 Input-Output Analysis: example

Three-Sector Economy In an economic system, each of three industries depends on the others for raw materials.

- To make $\$ 1$ of processed wood requires:
- \$. 30 wood,
- \$. 20 steel
- \$. 10 coal.
- To make \$1 of processed steel requires:
- $\$.00$ wood,
- \$. 30 steel
- \$. 20 coal.
- To make $\$ 1$ of processed coal requires:
- \$. 10 wood,
- \$. 20 steel
- \$. 05 coal.

To allow for $\$ 1$ consumption in wood, $\$ 4$ consumption in steel, and $\$ 2$ consumption in coal, what levels of production for wood, steel, and coal are required?

$$
\begin{gather*}
\mathrm{A}=\left[\begin{array}{lll}
0.30 & 0 & 0.10 \\
0.20 & 0.30 & 0.20 \\
0.10 & 0.20 & 0.05
\end{array}\right], \mathrm{D}=\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right] \tag{17}\\
\mathrm{B}=(\mathrm{I}-\mathrm{A})=\left[\begin{array}{ccc}
0.70 & 0 & -0.10 \\
-0.20 & 0.70 & -0.20 \\
-0.10 & -0.20 & 0.95
\end{array}\right] \tag{18}\\
\mathrm{B}^{-1}=(\mathrm{I}-\mathrm{A})^{-1}=\left[\begin{array}{ccc}
1.4654 & 0.0469 & 0.1641 \\
0.4924 & 1.5358 & 0.3751 \\
0.2579 & 0.3283 & 1.1489
\end{array}\right] \tag{19}
\end{gather*}
$$

Matrices

Input-Output Analysis: solution for example

$$
\begin{array}{r}
X=(I-A)^{-1} D=B^{-1} D=\left[\begin{array}{lll}
1.4654 & 0.0469 & 0.1641 \\
0.4924 & 1.5358 & 0.3751 \\
0.2579 & 0.3283 & 1.1489
\end{array}\right]\left[\begin{array}{l}
1 \\
4 \\
2
\end{array}\right] \\
(20) \\
X=\left[\begin{array}{c}
1.98 \\
7.39 \\
3.87
\end{array}\right]
\end{array}
$$

